Guten morgen!
Ich hätte eine Frage zum ersten Bsp! Ich verstehe nicht den unterschied zwichen dem Omega, das man durch ableiten des Volumens erhält und dem Omega, das sich aus der Mulitplikation mit einer Konstante ergibt! Könnte mir wer den unterschied erklären!Danke
Ich stehe ein wenig auf der Leitung:
Was ist das Omega,
Könntest du kurz die Formel aufschreiben auf die du dich beziehst?
Würde ich gern, aber ich finde grad meinen latex editor nicht!!!..
Ja, der ist irgendwie aus dem Forum verschwunden, hier ist er.
Die Erklärung bezieht sich auf das Skriptum(2.Ed.) Seite28/29 im Kapitel '2.5 Classical and quantum mechanical counting of the number of microstates \Omega '(möglicherweise haben sich die Seitenzahlen bzw. Nummerierungen geringfügig geändert in der neuen Auflage).
In Abbildung 2.6 sieht man den Phasenraum eines Harm. Oszillators. Alle Zustände mit einer Energie E befinden sich auf einer Ellipse. Das Phasenraumvolumen \phi(E) ist die Fläche innerhalb der Ellipse(E). Wenn ein Teilchen eine Energie im Intervall (E,E+\Delta) hat, befindet es sich in irgend einem Zustand im Phasenraum zwischen den 2 Ellipsen E und E+\Delta .Das Maß für die Anzahl der Zustände/Realisierungsmöglichkeiten eines Makrozustandes ist die Fläche dazwischen \Omega(E,\Delta).
Das Phasenraumvolumen \Omega(E,\Delta) kann man nun durch Integration \phi(E) über das Energieintervall (E,E+\Delta) berechnen oder für kleine \Delta durch das Produkt \Omega\approx \frac{d\phi(E)}{dE} \cdot \Delta abschätzen.
For a quantum system \frac{\Omega}{N! h^{fN}} equals the number of possible microstates.
Ich hoffe die Erklärung hilft weiter. In der statistischen Physik werden oft relativ grobe Näherungen gemacht ohne das näher zu erklären, meistens sind sie aber gerechtfertigt.
Vielen Dank!
Ich glaub jetzt verstehe ich das!
lg andi